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Abstract.  Delamination is a phenomenon characterized by the loss of adhesion between two
adjacent laminae. This is a damage process frequently observed in composite materials and it
may cause either loss of structural stiffness or total failure of the laminate. This contribution
presents a model to describe composite delamination. The proposed model considers a laminate
with a finite thickness interlayer. Interlaminar stresses are evaluated from a modified lamination
theory. This result is used as input in the constitutive adhesion model which describes the
damage evolution of the interlayer. An iterative numerical procedure is developed, solving the
model equations separately. This work considers numerical simulations of a laminated tube as an
application of the proposed general formulation.
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1. INTRODUCTION

The basic building block of a composite material is the lamina, which usually consists of a
reinforced fiber matrix. Several laminae are usually bonded together to act as an integral
structural element denoted as laminate. The degradation modes of composite laminates can be
split into two classes: intralaminar damages and delamination. Intralaminar damage includes
transverse matrix cracking, fiber-matrix debonding and fiber ruptures. On the other hand,
delamination is a phenomenon characterized by the loss of adhesion between two adjacent
laminae. This is a damage process frequently observed in composite material and it may cause
either loss of structural stiffness or total failure of the laminate. Delamination may be caused by
interlaminar stress concentration, which occurs either in the neighborhood of the free edge or
around loaded holes of the composite (Point & Sacco, 1996).

The study of delamination process may be carried out by two different approaches. The
first is the fracture mechanics, which considers the failure modes of the material. The second
approach considers phenomenological constitutive equations to describe the interlaminar
behavior. Usually, the interlayer is considered as a surface, neglecting its thickness. Therefore,



delamination is characterized by the loss of contact between the laminae (Point & Sacco, 1996;
Fremond et al., 1996; Tien, 1990; Point, 1989; Fremond, 1985, 1987, 1988).

This contribution presents a model to describe composite delamination. The proposed
model considers a laminate with a finite thickness interlayer. Interlaminar stresses are evaluated
from a modified lamination theory proposed by Bai et al. (1997). This result is used as input in a
constitutive adhesion model which describes the damage evolution of the interlayer. This
constitutive model is based on the adhesion model proposed by Fremond and co-workers (Point
& Sacco, 1996; Fremond et al., 1996; Tien, 1990; Fremond, 1985). An iterative numerical
procedure is developed, solving the model equations separately. Finally, this work considers
numerical simulations of a laminated tube as an application of the proposed general formulation.

2. MODIFICATION OF CLASSICAL LAMINATION THEORY

The determination of interlaminar stresses is very important to analyze delamination
problem. This contribution evaluates the interlaminar stresses by considering a modification of
classical lamination theory proposed by Bai et al. (1997). With this aim, consider a two-layer
laminated element, each with thickness h and an interlayer with finite thickness δ, as depicted in
Fig.1.

Figure 1 - Laminate with interlayer.

Interlaminar deformations, ε13 and ε23, are resulted from interlaminar stress, τ13 and τ23,
induced by the stiffness mismatch between laminae. Since the interlaminar deformation in each
lamina is much smaller than at each interface due to imperfect interfacial bonding, it is assumed
that there is no interlaminar deformation in each lamina and all interlaminar deformation occurs
in the interlayer. Hence, consider the two-layer laminate with rectangular coordinates (x1, x2, x3)
where x1-x2 plane coincides with the mid-plane of the laminate. The in-plane stresses on each
lamina consist of the sum of the stress σij (i, j = 1,2), due to external loads, and the constraint
stress ∆σij (i, j = 1,2) provided by its adjacent laminae.
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Now, taking into account the stress transformation tensor, u

ijklT  and l

ijklT , one obtains the strain on

each lamina (Bai et al., 1997),
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At this point, it is possible to evaluate the interlaminar strains as follows,
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According to the linear shear slip theory (Lu & Liu, 1992), the difference between the
displacements of the upper and the lower surfaces of the interlayer is given by,
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where ∆u and ∆v are the displacement difference in the x1 and x2 directions, respectively. The
constant G is the shear modulus of the interlayer.

For continuity conditions, the in-plane displacements of the upper and the lower laminae
must be equal to the displacements of the upper and lower surfaces of the interlayer. Therefore,
assuming infinitesimal strain hypothesis and linear elastic relations, it is possible to write,
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Establishing the equilibrium on the lamina element, the following equations are obtained
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Using these results in the equations of interlaminar strain, Eq. (7), and then in Eq. (4), one
obtains the constraint stress ∆σ11, ∆σ22 and ∆τ12 from the following set of differential equations:
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3. ADHESION MODEL

The thermodynamic state of a solid is completely defined by the knowledge of the state
variables. Constitutive equations may be formulated within the formalism of continuum
mechanics and thermodynamics of irreversible processes, by considering thermodynamic forces,
defined from the Helmholtz free energy, ψ, and thermodynamic fluxes, defined from the pseudo-
potential of dissipation, φ (Lemaitre & Chaboche, 1990). The adhesion model here proposed is
based on the constitutive model proposed by Fremond and co-workers (Point & Sacco, 1996;
Fremond et al., 1996; Tien, 1990; Point, 1989; Fremond, 1985).

With this aim, consider a variable associated with the relative displacement between two
points of the interlayer, with the same coordinate (x1, x2), r. In this article, the following
definition is considered,

22 vur ∆∆ += (12)

In order to evaluate adhesion, a damage variable γ is introduced. This variable is associated
with bonded surfaces and assumes the following values: γ = 0, when there is total adhesion; 0 < γ
< 1, when the adhesion is partial; γ = 1, when there is no adhesion. As a matter of fact, this
variable represents two kinds of damage associated with the adhesive damage between upper and
lower laminae and the interlayer. The damage variables associated with intralaminar behavior are
not included in this model.

Therefore, the interlayer state is defined by the pair (r, γ), which represents the state
variables of the delamination phenomenon. At this point, consider a Helmholtz free energy with
the form,
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where k and a are constants. IC represents the indicator function associated with the set C defined
as follows



C  =  { γ  :   0  ≤  γ  ≤  1, 0≥γ� } (14)
The thermodynamic forces are given by (Lemaitre & Chaboche, 1990),
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where ψi∂  is the sub-differential of the Helmholtz free energy with respect to variable i

(Rockafellar, 1970). Now, consider the dual of the potential of dissipation,
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where b and c are constants. IW represents the indicator function associated with the set W defined
as follows

W  =  { Y  :  Y ≥ 0} (17)

The evolution equations of the state variables are given by the following definitions (Lemaitre &
Chaboche, 1990),
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where *φi∂  is the sub-differential of the dual of potential of dissipation with respect to a

thermodynamic force, i. Since the pseudo-potential of dissipation, or its dual, is convex, positive
and vanishes at the origin, the Clausius-Duhen inequality (Eringen, 1967),
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is automatically satisfied if the entropy is defined as  Ts ∂−∂= /ψ .

4. NUMERICAL PROCEDURE

The numerical procedure here proposed has two parts. On the first, interlaminar stresses are
evaluated using the modification of the classical lamination theory proposed by Bai et al. (1997).
The next step of solution consists on evaluating the evolution of the state variables of the
adhesion model. An iterative procedure assures the convergence of the procedure.

The determination of interlaminar stresses may be either analytical or numerical, solving
Eq. (9-11). From this solution, it is possible to calculate relative displacements which are used as
an input on the adhesion model. Time discretization is necessary to evaluate the evolution of state
variables. By considering the implicit Euler algorithm, the following equations are written,
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where the superscript i is associated with space, while subscript n is associated with time instant.
The sub-differential CIγ∂ is numerically treated by considering the projection of the variable γ on

the set C, while WY I∂ considers the projection of Y on the set W.

An iterative numerical procedure is employed until some convergence criterion is satisfied.
In this article, one considers that the pair (r, γ), at a given point and in two subsequent time
instants, are very close.

In order to analyze post-delamination behavior a generic point j, which is the outer non-
delaminated point, is considered (Fig.2). The relative displacement of the points between point j
and the free edge must be evaluated by an alternative procedure. One conceives that the relative
displacement r is calculated by spatial numerical integration of the strain. With this assumption,
the displacements after delamination are calculated as follows,

Figure 2 - Laminate showing a delaminated region.
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which permits to obtain the relative displacements,
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Hence, the relative displacement of a generic point on the delaminated region, is given by
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This is a simplified procedure, which represents a first approach of the problem.
Nevertheless, it should be pointed out that a more detailed analysis of this problem, out of the
scope of this contribution, must be carried out to validate it.

5. LAMINATED TUBE

As an application of the proposed model, an anti-symmetric two-layer angle ply laminated
tube, depicted in Fig.3, is considered. The analysis is restrict to situations where lamina response
occurs on elastic domain, and that the composite failure occurs by delamination. With this
assumption, either lamina or interface rupture cannot occur. This hypothesis is confirmed using
von Mises criterion for the interlayer and Tsai-Hill criterion for the laminae (Gibson, 1994).

Figure 3 - Anti-symmetric laminated tube [+θ,-θ].

By considering the same assumption employed by Bai et al. (1997), that is, each lamina has
the same geometrical and material properties, Eq. (9-11) are simplified resulting on the following
relations for the interlaminar stresses
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As an example, one considers a [+30o/-30o] 60mm long laminated tube with 15mm of
internal diameter and 2mm of thickness. The material is AS/3501 whose properties are presented
in Table 1. The constitutive properties of the interlayer are presented in Table 2. One has also
considered a cyclic tensile stress load, depicted in Fig.4.

Table 1. Material properties.

Material E1 (GPa) E2 (GPa) G12 (GPa)
12υ

AS/3501 138,0 9,0 6,9 0,30

Table 2. Interface constitutive properties.

k [109 N.m-3] a [109 N.m-3] b  [(m2)(J.s2)-1] c  [m3 (N.s2)-1] δ/G [m.(Pa)-1]
500 7 100 5.10-12 10-13
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Figure 4 - Cyclic tensile stress load.

An analysis of state variables and thermodynamic forces is now in order. Time evolution of
the relative displacement r, is presented in Fig.5a. After delamination process is completed, the
laminae are debonded, and there is a great relative displacement increase. This is a consequence
of contact loss between the laminae that causes a loss of resistance. The thermodynamic force XR

is associated with the relative displacement and represents the contact stress between lamina and
interlayer (Fremond et al., 1996). As it can be seen in Fig.5b, this variable has a maximum value
before delamination begins to occur and, after this, decreases. It means a loss of resistive stress.
When the laminae are debonded, there are small values of XR meaning that some contact stress
remains to be provided by the adhesive (Tien, 1990; Fremond et al., 1996).

Damage variable evolution is presented in Fig.5c and permits to visualize the delamination
evolution. When γ = 1, delamination is completed and the laminae debonds. It is clear that
delamination process starts at free edge and propagates to interior points. This result is in close
agreement with experimental analysis (Pipes and Pagano, 1970) and is a consequence of
asymptotic growth of interlaminar shear stresses on free edge region (Wang & Choi, 1982).
Thermodynamic force Y is associated with damage variable γ and represents the energy necessary



to promote the delamination process. As Fig.5d shows, the maximum value of this variable is at
the free edge meaning the high energy associated with delamination of this point. After
delamination of the free edge, the Y value tends to decrease in other points. Observing time
evolution of Y at some particular point, this variable presents a maximum value and then becomes
to decrease as delamination takes place. When the laminae are debonded, Y assumes null values.
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Figure 5 - Time evolution of state variables and thermodynamic forces for [+30o/-30o] AS/3501
laminated tube, subjected to cyclic tensile stress. a) r ; b) XR; c) γ; d) Y.

6. CONCLUSIONS

This contribution reports on a model to describe delamination on laminated composite
materials. The proposed model considers a laminate with a finite thickness interlayer.
Interlaminar stresses are evaluated from a modified lamination theory. This result is used as an
input in a constitutive adhesion model which describes the damage evolution of the interlayer. An
iterative numerical procedure is developed, solving the model equations separately. Numerical



simulations of a laminated tube are considered as an application of the proposed general
formulation. An analysis of state variables and thermodynamic forces are presented, explaining
their physical meaning. Numerical results show that the model is capable of predicting
qualitatively the delamination phenomenon. Nevertheless, experimental analysis is necessary for
quantitative validation of the proposed model.
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